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Cloud Forcing Intro

• Clouds substantially impact on 
SW and LW radiative budget

– Substantial disagreement in cloud 
forcing (CF) in climate change 
scenarios

– Current understanding of UT 
cloud processes produces 
disagreements in vertical structure

• CF, if properly used, can diagnose 
the effect of clouds on climate 
sensitivity (Soden et al, 2004)

• What can the MLS IWC profiles 
tell us about the ice cloud 
contribution to cloud forcing?

– What lessons can be learned for 
application to CloudSat cloud 
forcing studies?

∆TOA CRF from 2 x CO2 for several GCM 
results Le Treut and McAveney, 2000
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CF Calculation Basics
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• Fast Correlated-K methods 
utilized

• RRTM_LW :
– Fluxes: ±1.0 W/m2 relative to 

LBLRTM
– Liquid, ice water clouds

• RRTM_SW :
– Fluxes: ±1.0 W/m2 direct, ±2.0 

W/m2 diffuse
– DISORT: (4-stream w/δ-M 

scaling)
– Liquid, ice clouds + aerosols

• Fu-Liou:
– Shortwave flux from 2-stream

• Our calculation of CF:
– SW CF – LW CF > 0 → cooling
– SW CF – LW CF < 0 → heating
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CF Calculation Considerations
• Parameters relevant to cloud forcing calculations

– Cloud water path
– Effective particle diameter
– Habit distribution (for SW)
– Cloud fraction, overlap (for SW)
– T(z), H2O(z), O3(z)
– Appropriate spatial, temporal averaging

• Cloud water path and De are semi-independent quantities wrt
remote sensing

• Cloud overlap approximation for non-unity horizontal grid cloud 
fraction

– Ad hoc schemes for estimating 
effective between-layer cloud fraction

– Morcrette et al. 2000: COA important
– Stephens et al. 2004: COA unimportant
– What to do about large MLS IWC product grid boxes?

• Temporal averaging
– For MLS, global coverage requires analysis at monthly time scales.

Morcrette et al, 2000
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MLS IWC Retrievals
• 200 x 7 x 3 km (along-track, cross-track, vertical)
• 118, 190, 240, 640, and 2523 GHz frequencies 

utilized in retrieval
– <215 hPa, robust retrieval at 240 GHz

• Sequential nonlinear optimal estimation retrieval
– T, gas profiles first → clear-sky spectra
– Clear-sky – measurement → cloud-induced radiance
– CiR inverted for IWC

• Sensitivity range: 0.4 - 50 mg/m3

• Size distribution inferred from ambient T profile

from Wu et al, 2006from McFarquhar et al, 1997
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Validation Data: CERES

• CERES measures OSR, OLR, 
and cloud forcing aboard TRMM, 
TERRA, and AQUA

– Shortwave (0.3-5.0 µm)
– Total (0.3-50.0 µm)
– Window (8-12 µm)

• ES4 products: 
– monthly gridded
– CERES/model hybrid data 
– 2.5x2.5 resolution 
– ERBE heritage
– ±6 W/m2 SW
– ±1.3 W/m2 LW

• Combination sets: 
– Multiple CERES instruments
– MODIS L1B
– RAP & FAP modes

From http://eosweb.larc.nasa.gov/

From http://lposun.larc.nasa.gov
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MLS Standard + AIRS L3: 01/2005 vs. CERES
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LW Comparison with ECMWF calculations
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Validation Data: BSRN data
• SKYRAD:

– Diffuse, Direct SW 
Irradiance

– Downwelling LW Irradiance
• State-of-the-art instrument 

calibration validates cloud 
forcing calculations and 
satellite surface flux products

• Continuous sampling facilitates 
allows for validation of CF 
forcing calculation 
assumptions

• ARSCL active sounding 
information

SKYRAD from www.arm.gov

Surface Site Description

Map of surface stations from CAVE
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CERES surface flux prediction skill

from http://www-cave.larc.nasa.gov
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What about CloudSat (+ Calipso)?
• CLOUDSAT

– Radar activated 06/02/06
– Operational product specs: 

TOA, SRF flux ±10 W/m2 instantaneously
– L2 ATBD: 

• Liquid De = 20 µm Ice De = 60 µm
• Will utilize Aqua MODIS to constrain 

cloud microphysical property parameters
– Deriving unbiased global cloud forcing 

maps from Cloudsat is non-trivial
– MLS still provides more global description 

of UT ice clouds than active sounders
• Ground-based validation more important 

than ever to interpret cloud forcing from 
liquid and ice clouds.

Cloudsat’s quicklook at granule 01905, 9/6/06
(from http://cloudsat.atmos.colostate.edu)
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Conclusions
• Cloud forcing from MLS requires several assumptions:

– Cloud particle size
– Cloud overlap
– Unbiased temporal averaging

• As compared to CERES Aqua ES-4 product
– CF from MLS IWC spatial pattern agreement in tropics
– ECMWF IWC shows greater % of total CF

• Continuous surface site data indicate that:
– CERES LW surface forcing product robust
– CERES SW surface forcing product robust only in clear-sky scenarios

• Challenge for utilization of CERES, MLS (and Cloudsat + Calipso): 
ascription of cloud forcing to ice clouds
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